Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
1.
Am J Physiol Renal Physiol ; 319(1): F8-F18, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32421349

RESUMO

Sepsis is the leading cause of acute kidney injury in critically ill patients. Tumor necrosis factor-α (TNF-α) has been implicated in the pathogenesis of septic kidney injury; however, the sites and mechanisms of renal TNF-α production during sepsis remain to be defined. In the present study, we showed that TNF-α expression is increased in medullary thick ascending limbs (MTALs) of mice with sepsis induced by cecal ligation and puncture. Treatment with lipopolysaccharide (LPS) for 3 h in vitro also increased MTAL TNF-α production. Sepsis and LPS increased MTAL TNF-α expression through activation of the myeloid differentiation factor 88 (MyD88)-IL-1 receptor-associated kinase 1-ERK signaling pathway. Pretreatment with monophosphoryl lipid A (MPLA), a nontoxic immunomodulator that protects against bacterial infection, eliminated the sepsis- and LPS-induced increases in MTAL TNF-α production. The suppressive effect of MPLA on TNF-α was mediated through activation of a phosphatidylinositol 3-kinase-dependent pathway that inhibits MyD88-dependent ERK activation. This likely involves MPLA-phosphatidylinositol 3-kinase-mediated induction of Tollip, which negatively regulates the MyD88-ERK pathway by inhibiting activation of IL-1 receptor-associated kinase 1. These regulatory mechanisms are similar to those previously shown to mediate the effect of MPLA to prevent sepsis-induced inhibition of MTAL [Formula: see text] absorption. These results identify the MTAL as a site of local TNF-α production in the kidney during sepsis and identify molecular mechanisms that can be targeted to attenuate renal TNF-α expression. The ability of MPLA pretreatment to suppress MyD88-dependent ERK signaling in the MTAL during sepsis has the dual beneficial effects of protecting tubule transport functions and attenuating harmful proinflammatory responses.


Assuntos
Citocinas/metabolismo , Medula Renal/efeitos dos fármacos , Lipídeo A/análogos & derivados , Alça do Néfron/efeitos dos fármacos , Sepse/metabolismo , Animais , Medula Renal/metabolismo , Lipídeo A/farmacologia , Lipopolissacarídeos/farmacologia , Alça do Néfron/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Am J Physiol Renal Physiol ; 317(3): F705-F719, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31241993

RESUMO

LPS inhibits HCO3- absorption in the medullary thick ascending limb (MTAL) through a Toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-extracellular signal-regulated kinase (ERK) pathway that is upregulated by sepsis. Pretreatment with the nontoxic immunomodulator monophosphoryl lipid A (MPLA) prevents inhibition by LPS through activation of a TLR4-TIR-domain-containing adaptor-inducing interferon-ß (TRIF)-phosphatidylinositol 3-kinase (PI3K) pathway that prevents LPS-induced ERK activation. Here, we identified the molecular mechanisms that underlie the protective inhibitory interaction between the MPLA-PI3K and LPS-ERK pathways. Treatment of mouse MTALs with LPS in vitro increased phosphorylation of IL-1 receptor-associated kinase (IRAK)-1, a critical mediator of LPS signaling downstream of TLR4-MyD88. Activation of ERK by LPS was eliminated by a selective IRAK-1 inhibitor, establishing IRAK-1 as the upstream mediator of ERK activation. Pretreatment of MTALs with MPLA in vitro prevented LPS-induced IRAK-1 activation; this effect was dependent on PI3K. Treatment of MTALs with MPLA increased expression of Toll-interacting protein (Tollip), an inducible protein that negatively regulates LPS signaling by inhibiting IRAK-1. The MPLA-induced increase in Tollip protein level was prevented by PI3K inhibitors. In coimmunoprecipitation experiments, MPLA increased the amount of Tollip stably bound to IRAK-1, an interaction that inhibits IRAK-1 activation. These results support a mechanism whereby MPLA increases Tollip expression in the MTAL through a PI3K-dependent pathway. Tollip, in turn, inhibits LPS-induced TLR4 signaling by suppressing activation of IRAK-1, thereby preventing activation of ERK that inhibits HCO3- absorption. These studies show that MPLA induces reprogramming of MTAL cells that protects against LPS stimulation and identify IRAK-1 and Tollip as new therapeutic targets to prevent renal tubule dysfunction in response to infectious and inflammatory stimuli.


Assuntos
Adjuvantes Imunológicos/farmacologia , Bicarbonatos/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipídeo A/análogos & derivados , Alça do Néfron/efeitos dos fármacos , Reabsorção Renal/efeitos dos fármacos , Sepse/tratamento farmacológico , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Citoproteção , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lipídeo A/farmacologia , Alça do Néfron/metabolismo , Alça do Néfron/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Ratos Sprague-Dawley , Sepse/metabolismo , Sepse/fisiopatologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
3.
Am J Physiol Renal Physiol ; 317(2): F411-F418, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166708

RESUMO

Claudins are a family of tight junction proteins that provide size and charge selectivity to solutes traversing the paracellular space. Thick ascending limbs (TALs) express numerous claudins, including claudin-19. Nitric oxide (NO), via cGMP, reduces dilution potentials in perfused TALs, a measure of paracellular permeability, but the role of claudin-19 is unknown. We hypothesized that claudin-19 mediates the effects of NO/cGMP on the paracellular pathway in TALs via increases in plasma membrane expression of this protein. We measured the effect of the NO donor spermine NONOate (SPM) on dilution potentials with and without blocking antibodies and plasma membrane expression of claudin-19. During the control period, the dilution potential was -18.2 ± 1.8 mV. After treatment with 200 µmol/l SPM, it was -14.7 ± 2.0 mV (P < 0.04). In the presence of claudin-19 antibody, the dilution potential was -12.7 ± 2.1 mV. After SPM, it was -12.9 ± 2.4 mV, not significantly different. Claudin-19 antibody alone had no effect on dilution potentials. In the presence of Tamm-Horsfall protein antibody, SPM reduced the dilution potential from -9.7 ± 1.0 to -6.3 ± 1.1 mV (P < 0.006). Dibutyryl-cGMP (500 µmol/l) reduced the dilution potential from -19.6 ± 2.6 to -17.2 ± 2.3 mV (P < 0.002). Dibutyryl-cGMP increased expression of claudin-19 in the plasma membrane from 29.9 ± 3.8% to 65.9 ± 10.1% of total (P < 0.011) but did not change total expression. We conclude that claudin-19 mediates the effects of the NO/cGMP signaling cascade on the paracellular pathway.


Assuntos
Claudinas/metabolismo , GMP Cíclico/metabolismo , Alça do Néfron/metabolismo , Óxido Nítrico/metabolismo , Reabsorção Renal , Sistemas do Segundo Mensageiro , Sódio/metabolismo , Animais , Cloretos/metabolismo , Claudinas/fisiologia , Dibutiril GMP Cíclico/farmacologia , Alça do Néfron/efeitos dos fármacos , Masculino , Potenciais da Membrana , Doadores de Óxido Nítrico/farmacologia , Perfusão , Ratos Sprague-Dawley , Reabsorção Renal/efeitos dos fármacos , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Espermina/análogos & derivados , Espermina/farmacologia
4.
Kidney Int ; 96(2): 363-377, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31146973

RESUMO

Lithium salts, used for treating bipolar disorder, frequently induce nephrogenic diabetes insipidus (NDI) thereby limiting therapeutic success. NDI is associated with loss of expression of the gene coding for the molecular water channel, aquaporin-2, in the renal collecting duct (CD). Here, we use systems biology methods in a well-established rat model of lithium-induced NDI to identify signaling pathways activated at the onset of polyuria. Using single-tubule RNA-Seq, full transcriptomes were determined in microdissected cortical collecting ducts (CCDs) of rats after 72 hours without or with initiation of lithium chloride administration. Transcriptome-wide changes in mRNA abundances were mapped to gene sets associated with curated canonical signaling pathways, showing evidence for activation of NF-κB signaling with induction of genes coding for multiple chemokines and most components of the Major Histocompatibility Complex Class I antigen-presenting complex. Administration of anti-inflammatory doses of dexamethasone to lithium chloride-treated rats countered the loss of aquaporin-2. RNA-Seq also confirmed prior evidence of a shift from quiescence into the cell cycle with arrest. Time course studies demonstrated an early (12 hour) increase in multiple immediate early response genes including several transcription factors. Protein mass spectrometry in microdissected CCDs provided corroborative evidence and identified decreased abundance of several anti-oxidant proteins. Thus, in the context of prior observations, our study can be best explained by a model in which lithium increases ERK activation leading to induction of NF-κB signaling and an inflammatory-like response that represses Aqp2 transcription.


Assuntos
Antimaníacos/efeitos adversos , Aquaporina 2/metabolismo , Diabetes Insípido Nefrogênico/induzido quimicamente , Túbulos Renais Coletores/efeitos dos fármacos , Cloreto de Lítio/efeitos adversos , Animais , Diabetes Insípido Nefrogênico/metabolismo , Túbulos Renais Coletores/metabolismo , Alça do Néfron/efeitos dos fármacos , Alça do Néfron/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Transcriptoma/efeitos dos fármacos
5.
Am J Physiol Renal Physiol ; 317(1): F99-F106, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091128

RESUMO

The apical Na+-K+-2Cl- cotransporter (NKCC2) mediates NaCl reabsorption by the thick ascending limb (TAL). The free radical superoxide ( O2- ) stimulates TAL NaCl absorption by enhancing NKCC2 activity. In contrast, nitric oxide (NO) scavenges O2- and inhibits NKCC2. NKCC2 activity depends on the number of NKCC2 transporters in the TAL apical membrane and its phosphorylation. We hypothesized that O2- stimulates NKCC2 activity by enhancing apical surface NKCC2 expression. We measured surface NKCC2 expression in rat TALs by surface biotinylation and Western blot analysis. Treatment of TALs with O2- produced by exogenous xanthine oxidase (1 mU/ml) and hypoxanthine (500 µM) stimulated surface NKCC2 expression by ~18 ± 5% (P < 0.05). O2- -stimulated surface NKCC2 expression was blocked by the O2- scavenger tempol (50 µM). Scavenging H2O2 with 100 U/ml catalase did not block the stimulatory effect of xanthine oxidase-hypoxanthine (22 ± 8% increase from control, P < 0.05). Inhibition of endogenous NO production with Nω-nitro-l-arginine methyl ester enhanced surface NKCC2 expression by 21 ± 6% and, when added together with xanthine oxidase-hypoxanthine, increased surface NKCC2 by 41 ± 10% (P < 0.05). Scavenging O2- with superoxide dismutase (300 U/ml) decreased this stimulatory effect by 60% (39 ± 4% to 15 ± 10%, P < 0.05). Protein kinase C inhibition with Gö-6976 (100 nM) blocked O2- -stimulated surface NKCC2 expression (P < 0.05). O2- did not affect NKCC2 phosphorylation at Thr96/101 or its upstream kinases STE20/SPS1-related proline/alanine-rich kinase-oxidative stress-responsive kinase 1. We conclude that O2- increases surface NKCC2 expression by stimulating protein kinase C and that this effect is blunted by endogenous NO. O2- -stimulated apical trafficking of NKCC2 may be involved in the enhanced surface NKCC2 expression observed in Dahl salt-sensitive rats.


Assuntos
Alça do Néfron/efeitos dos fármacos , Proteína Quinase C/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Superóxidos/farmacologia , Animais , Alça do Néfron/enzimologia , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Ratos Sprague-Dawley , Reabsorção Renal , Cloreto de Sódio/urina , Superóxidos/metabolismo , Treonina , Regulação para Cima
6.
Physiol Rep ; 7(5): e14015, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30839176

RESUMO

Sodium transport in the thick ascending loop of Henle (TAL) is tightly regulated by numerous factors, especially angiotensin II (Ang II), a key end-product of the renin-angiotensin system (RAS). However, an alternative end-product of the RAS, angiotensin-(1-7) [Ang-(1-7)], may counter some of the Ang II actions. Indeed, it causes vasodilation and promotes natriuresis through its effects in the proximal and distal tubule. However, its effects on the TAL are unknown. Because the TAL expresses the Mas receptor, an Ang-(1-7) ligand, which in turn may increase NO and inhibit Na+ transport, we hypothesized that Ang-(1-7) inhibits Na transport in the TAL, via a Mas receptor/NO-dependent mechanism. We tested this by measuring transport-dependent oxygen consumption (VO2 ) in TAL suspensions. Administering Ang-(1-7) decreased VO2 ; an effect prevented by dimethyl amiloride and furosemide, signifying that Ang-(1-7) inhibits transport-dependent VO2 in TAL. Ang-(1-7) also increased NO levels, known inhibitors of Na+ transport in the TAL. The effects of Ang-(1-7) on VO2 , as well as on NO levels, were ameliorated by the Mas receptor antagonist, D-Ala, in effect suggesting that Ang-(1-7) may inhibit transport-dependent VO2 in TAL via Mas receptor-dependent activation of the NO pathway. Indeed, blocking NO synthesis with L-NAME prevented the inhibitory actions of Ang-(1-7) on VO2 . Our data suggest that Ang-(1-7) may modulate TAL Na+ transport via Mas receptor-dependent increases in NO leading to the inhibition of transport activity.


Assuntos
Angiotensina I/farmacologia , Alça do Néfron/efeitos dos fármacos , Natriurese/efeitos dos fármacos , Natriuréticos/farmacologia , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Sódio/metabolismo , Animais , Alça do Néfron/metabolismo , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/metabolismo , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Regulação para Cima
7.
Am J Physiol Renal Physiol ; 316(5): F838-F846, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30810355

RESUMO

The thick ascending limb of Henle's loop (TAL) reabsorbs NaCl via the apical Na+-K+-2Cl- cotransporter (NKCC2). NKCC2 activity is regulated by surface NKCC2 levels. The second messenger cGMP decreases NKCC2 activity by decreasing surface NKCC2 levels. We found that surface NKCC2 undergoes constitutive degradation. Therefore, we hypothesized that cGMP decreases NKCC2 levels by increasing NKCC2 ubiquitination and proteasomal degradation. We measured surface NKCC2 levels by biotinylation of surface proteins, immunoprecipitation of NKCC2, and ubiquitin in TALs. First, we found that inhibition of proteasomal degradation blunts the cGMP-dependent decrease in surface NKCC2 levels [vehicle: 100%, db-cGMP (500 µM): 70.3 ± 9.8%, MG132 (20 µM): 97.7 ± 5.0%, and db-cGMP + MG132: 103.3 ± 3.4%, n = 5, P < 0.05]. We then found that cGMP decreased the internalized NKCC2 pool and that this effect was prevented by inhibition of the proteasome but not the lysosome. Finally, we found that NKCC2 is constitutively ubiquitinated in TALs and that cGMP enhances the rate of NKCC2 ubiquitination [vehicle: 59 ± 14% and db-cGMP (500 µM): 111 ± 25%, n = 5, P < 0.05]. We conclude that NKCC2 is constitutively ubiquitinated and that cGMP stimulates NKCC2 ubiquitination and proteasomal degradation. Our data suggest that the cGMP-induced NKCC2 ubiquitination and degradation may contribute to the cGMP-induced decrease of the NKCC2-dependent NaCl reabsorption in TALs.


Assuntos
Dibutiril GMP Cíclico/farmacologia , Alça do Néfron/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Ubiquitinação , Animais , Cinética , Alça do Néfron/enzimologia , Masculino , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ratos Sprague-Dawley
8.
Am J Physiol Renal Physiol ; 316(3): F550-F557, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30516424

RESUMO

The thick ascending limb (TAL) reabsorbs 25% of the filtered NaCl through the Na+-K+-2Cl- cotransporter (NKCC2). NKCC2 activity is directly related to surface NKCC2 expression and phosphorylation. Higher NaCl reabsorption by TALs is linked to salt-sensitive hypertension, which is linked to consumption of fructose in the diet. However, little is known about the effects of fructose on renal NaCl reabsorption. We hypothesized that fructose, but not glucose, acutely enhances TAL-dependent NaCl reabsorption by increasing NKCC2 activity via stimulation of surface NKCC2 levels and phosphorylation at Thr96/101. We found that fructose (5 mM) increased transport-related O2 consumption in TALs by 11.1 ± 3.2% ( P < 0.05). The effect of fructose on O2 consumption was blocked by furosemide. To study the effect of fructose on NKCC2 activity, we measured the initial rate of NKCC2-dependent thallium influx. We found that 20 min of treatment with fructose (5 mM) increased NKCC2 activity by 58.5 ± 16.9% ( P < 0.05). We then used surface biotinylation to measure surface NKCC2 levels in rat TALs. Fructose increased surface NKCC2 expression in a concentration-dependent manner (22 ± 5, 49 ± 10, and 101 ± 59% of baseline with 1, 5, and 10 mM fructose, respectively, P < 0.05), whereas glucose or a glucose metabolite did not. Fructose did not change NKCC2 phosphorylation at Thre96/101 or total NKCC2 expression. We concluded that acute fructose treatment increases NKCC2 activity by enhancing surface NKCC2 expression, rather than NKCC2 phosphorylation. Our data suggest that fructose consumption could contribute to salt-sensitive hypertension by stimulating NKCC2-dependent NaCl reabsorption in TALs.


Assuntos
Frutose/farmacologia , Alça do Néfron/efeitos dos fármacos , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Animais , Relação Dose-Resposta a Droga , Hipertensão/metabolismo , Alça do Néfron/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Fosforilação , Ratos
9.
Mol Med Rep ; 18(5): 4733-4738, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30221721

RESUMO

The aim of the present study was to investigate the acute effect and mechanism of tumor necrosis factor (TNF) on basolateral 50 pS K channels in the thick ascending limb (TAL) of the rat kidney. The TAL tubules were isolated from the rat kidney, and the activity of the 50 pS K channels was recorded using the patch­clamp technique. The results indicated that the application of TNF (10 nM) significantly activated the 50 pS K channels and the TNF effect was concentration­dependent. Inhibition of protein kinase A, phospholipase A2 and protein tyrosine kinase using pathway inhibitors (H89, AACOCF3 and Herbimycin A, respectively) did not abolish the stimulatory effect of TNF, indicating that none of these pathways mediated the TNF effect. By contrast, the phenylarsine oxide inhibitor against protein tyrosine phosphatase (PTP) decreased the activity of the 50 pS K channels and blocked the stimulatory effect of TNF on these channels. Furthermore, western blot analysis demonstrated that the application of TNF (10 nM) in the TAL increased the phosphorylation of PTP, an indication of PTP activity stimulation. Thus, it was concluded that the acute application of TNF may stimulate the basolateral 50 pS K channel in the TAL and the stimulatory effect of TNF may be mediated by the PTP­dependent pathway.


Assuntos
Túbulos Renais/metabolismo , Rim/metabolismo , Canais de Potássio/genética , Fator de Necrose Tumoral alfa/metabolismo , Animais , Ácidos Araquidônicos/administração & dosagem , Arsenicais/administração & dosagem , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Isoquinolinas/administração & dosagem , Rim/efeitos dos fármacos , Rim/patologia , Túbulos Renais/efeitos dos fármacos , Alça do Néfron/efeitos dos fármacos , Alça do Néfron/metabolismo , Masculino , Técnicas de Patch-Clamp , Inibidores de Fosfolipase A2/administração & dosagem , Fosfolipases A2/genética , Canais de Potássio/metabolismo , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Rifabutina/administração & dosagem , Rifabutina/análogos & derivados , Sulfonamidas/administração & dosagem , Fator de Necrose Tumoral alfa/administração & dosagem
10.
Am J Physiol Renal Physiol ; 315(3): F711-F725, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741098

RESUMO

Metabolic acidosis is the most common acid-base disorder in septic patients and is associated with increased mortality. Previously, we demonstrated that sepsis induced by cecal ligation and puncture (CLP) impairs [Formula: see text] absorption in the medullary thick ascending limb (MTAL) by 1) decreasing the intrinsic [Formula: see text] absorptive capacity and 2) enhancing inhibition of [Formula: see text] absorption by LPS through upregulation of Toll-like receptor (TLR) 4 signaling. Both effects depend on ERK activation. Monophosphoryl lipid A (MPLA) is a detoxified TLR4 agonist that enhances innate antimicrobial immunity and improves survival following sepsis. Pretreatment of MTALs with MPLA in vitro prevents LPS inhibition of [Formula: see text] absorption. Here we examined whether pretreatment with MPLA would protect the MTAL against sepsis. Vehicle or MPLA was administered to mice 48 h before sham or CLP surgery, and MTALs were studied in vitro 18 h postsurgery. Pretreatment with MPLA prevented the effects of sepsis to decrease the basal [Formula: see text] absorption rate and enhance inhibition by LPS. These protective effects were mediated through MPLA stimulation of a Toll/IL-1 receptor domain-containing adaptor-inducing IFN-ß-(TRIF)-dependent phosphatidylinositol 3-kinase-Akt pathway that prevents sepsis- and LPS-induced ERK activation. The effects of MPLA to improve MTAL [Formula: see text] absorption were associated with marked improvement in plasma [Formula: see text] concentration, supporting a role for the kidneys in the pathogenesis of sepsis-induced metabolic acidosis. These studies support detoxified TLR4-based immunomodulators, such as MPLA, that enhance antimicrobial responses as a safe and effective approach to prevent or treat sepsis-induced renal tubule dysfunction and identify cell signaling pathways that can be targeted to preserve MTAL [Formula: see text] absorption and attenuate metabolic acidosis during sepsis.


Assuntos
Acidose/prevenção & controle , Bicarbonatos/metabolismo , Lipídeo A/análogos & derivados , Alça do Néfron/efeitos dos fármacos , Reabsorção Renal/efeitos dos fármacos , Sepse/tratamento farmacológico , Equilíbrio Ácido-Base/efeitos dos fármacos , Acidose/metabolismo , Acidose/fisiopatologia , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Bicarbonatos/sangue , Bicarbonatos/urina , Modelos Animais de Doenças , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Lipídeo A/farmacologia , Alça do Néfron/metabolismo , Alça do Néfron/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/metabolismo , Sepse/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/agonistas
11.
Am J Physiol Renal Physiol ; 314(2): F190-F195, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971992

RESUMO

The nephron segments in the inner medulla are part of the urine concentrating mechanism. Depending on the diuretic state, they are facing a large range of extracellular osmolality. We investigated whether water homeostasis affects tubular transport and permeability properties in inner medullary descending thin limb (IMdTL) and ascending thin limb (IMaTL). Three experimental groups of rats under different diuretic states were investigated on metabolic cages: waterload, furosemide-induced diuresis, and control (antidiuresis). Urine production and osmolalities reflected the 3-day treatment. To functionally investigate tubular epithelial properties, we performed experiments in freshly isolated inner medullary thin limbs from these animals. Tubular segments were acutely dissected and investigated for trans- and paracellular properties by in vitro perfusion and electrophysiological analysis. IMdTL and IMaTL were distinguished by morphological criteria. We confirmed absence of transepithelial electrogenic transport in thin limbs. Although diffusion potential measurements showed no differences between treatments in IMdTLs, we observed increased paracellular cation selectivity under waterload in IMaTLs. NaCl diffusion potential was -5.64 ± 1.93 mV under waterload, -1.99 ± 1.72 mV under furosemide-induced diuresis, and 0.27 ± 0.40 mV under control. The corresponding permeability ratio PNa/Cl was 1.53 ± 0.21 (waterload), 1.22 ± 0.18 (furosemide-induced diuresis), and 0.99 ± 0.02 (control), respectively. Claudins are main constituents of the tight junction responsible for paracellular selectivity; however, immunofluorescence did not show qualitative differences in claudin 4, 10, and 16 localization. Our results show that IMaTLs change tight junction properties in response to diuretic state to allow adaptation of NaCl reabsorption.


Assuntos
Diurese/efeitos dos fármacos , Diuréticos/farmacologia , Ingestão de Líquidos , Células Epiteliais/efeitos dos fármacos , Furosemida/farmacologia , Alça do Néfron/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Água/metabolismo , Animais , Claudinas/metabolismo , Difusão , Células Epiteliais/metabolismo , Feminino , Alça do Néfron/metabolismo , Masculino , Concentração Osmolar , Permeabilidade , Ratos Sprague-Dawley , Reabsorção Renal/efeitos dos fármacos , Cloreto de Sódio/urina , Junções Íntimas/metabolismo
12.
Saudi J Kidney Dis Transpl ; 28(5): 1162-1164, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28937079

RESUMO

Early diagnosis of Bartter syndrome (BS) in the neonatal period is a clinical challenge, more so in an extremely low birth weight (ELBW) baby because of the inherent renal immaturity and the associated difficulty in fluid management. However, once a diagnosis is made, the disorder is known to respond well to fluid and electrolyte management, prostaglandin inhibitors, and potassium-sparing diuretics. Herein, we report a case of neonatal BS in a very premature ELBW infant.


Assuntos
Síndrome de Bartter/diagnóstico , Lactente Extremamente Prematuro , Recém-Nascido de muito Baixo Peso , Alça do Néfron/fisiopatologia , Desequilíbrio Ácido-Base/etiologia , Desequilíbrio Ácido-Base/fisiopatologia , Síndrome de Bartter/complicações , Síndrome de Bartter/fisiopatologia , Síndrome de Bartter/terapia , Peso ao Nascer , Inibidores de Ciclo-Oxigenase/uso terapêutico , Diurético Poupador de Potássio/uso terapêutico , Feminino , Hidratação , Idade Gestacional , Humanos , Hipopotassemia/etiologia , Hipopotassemia/fisiopatologia , Indometacina/uso terapêutico , Recém-Nascido , Alça do Néfron/efeitos dos fármacos , Poliúria/etiologia , Poliúria/fisiopatologia , Valor Preditivo dos Testes , Espironolactona/uso terapêutico , Resultado do Tratamento
13.
Am J Physiol Renal Physiol ; 313(1): F103-F115, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28356284

RESUMO

Monophosphoryl lipid A (MPLA) is a detoxified derivative of LPS that induces tolerance to LPS and augments host resistance to bacterial infections. Previously, we demonstrated that LPS inhibits [Formula: see text] absorption in the medullary thick ascending limb (MTAL) through a basolateral Toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-ERK pathway. Here we examined whether pretreatment with MPLA would attenuate LPS inhibition. MTALs from rats were perfused in vitro with MPLA (1 µg/ml) in bath and lumen or bath alone for 2 h, and then LPS was added to (and MPLA removed from) the bath solution. Pretreatment with MPLA eliminated LPS-induced inhibition of [Formula: see text] absorption. In MTALs pretreated with MPLA plus a phosphatidylinositol 3-kinase (PI3K) or Akt inhibitor, LPS decreased [Formula: see text] absorption. MPLA increased Akt phosphorylation in dissected MTALs. The Akt activation was eliminated by a PI3K inhibitor and in MTALs from TLR4-/- or Toll/IL-1 receptor domain-containing adaptor-inducing IFN-ß (TRIF)-/- mice. The effect of MPLA to prevent LPS inhibition of [Formula: see text] absorption also was TRIF dependent. Pretreatment with MPLA prevented LPS-induced ERK activation; this effect was dependent on PI3K. MPLA alone had no effect on [Formula: see text] absorption, and MPLA pretreatment did not prevent ERK-mediated inhibition of [Formula: see text] absorption by aldosterone, consistent with MPLA's low toxicity profile. These results demonstrate that pretreatment with MPLA prevents the effect of LPS to inhibit [Formula: see text] absorption in the MTAL. This protective effect is mediated directly through MPLA stimulation of a TLR4-TRIF-PI3K-Akt pathway that prevents LPS-induced ERK activation. These studies identify detoxified TLR4-based immunomodulators as novel potential therapeutic agents to prevent or treat renal tubule dysfunction in response to bacterial infections.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Lipídeo A/análogos & derivados , Lipopolissacarídeos/toxicidade , Alça do Néfron/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Bicarbonatos/metabolismo , Citoproteção , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnicas In Vitro , Lipídeo A/farmacologia , Alça do Néfron/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Perfusão , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Reabsorção Renal/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
14.
Am J Physiol Renal Physiol ; 312(6): F1035-F1043, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28274930

RESUMO

About 50% of the Na+ reabsorbed in thick ascending limbs traverses the paracellular pathway. Nitric oxide (NO) reduces the permselectivity of this pathway via cGMP, but its effects on absolute Na+ ([Formula: see text]) and Cl- ([Formula: see text]) permeabilities are unknown. To address this, we measured the effect of l-arginine (0.5 mmol/l; NO synthase substrate) and cGMP (0.5 mmol/l) on [Formula: see text] and [Formula: see text] calculated from the transepithelial resistance (Rt) and [Formula: see text]/[Formula: see text] in medullary thick ascending limbs. Rt was 7,722 ± 1,554 ohm·cm in the control period and 6,318 ± 1,757 ohm·cm after l-arginine treatment (P < 0.05). [Formula: see text]/[Formula: see text] was 2.0 ± 0.2 in the control period and 1.7 ± 0.1 after l-arginine (P < 0.04). Calculated [Formula: see text] and [Formula: see text] were 3.52 ± 0.2 and 1.81 ± 0.10 × 10-5 cm/s, respectively, in the control period. After l-arginine they were 6.65 ± 0.69 (P < 0.0001 vs. control) and 3.97 ± 0.44 (P < 0.0001) × 10-5 cm/s, respectively. NOS inhibition with Nω-nitro-l-arginine methyl ester (5 mmol/l) prevented l-arginine's effect on Rt Next we tested the effect of cGMP. Rt in the control period was 7,592 ± 1,470 and 4,796 ± 847 ohm·cm after dibutyryl-cGMP (0.5 mmol/l; db-cGMP) treatment (P < 0.04). [Formula: see text]/[Formula: see text] was 1.8 ± 0.1 in the control period and 1.6 ± 0.1 after db-cGMP (P < 0.03). [Formula: see text] and [Formula: see text] were 4.58 ± 0.80 and 2.66 ± 0.57 × 10-5 cm/s, respectively, for the control period and 9.48 ± 1.63 (P < 0.007) and 6.01 ± 1.05 (P < 0.005) × 10-5 cm/s, respectively, after db-cGMP. We modeled NO's effect on luminal Na+ concentration along the thick ascending limb. We found that NO's effect on the paracellular pathway reduces net Na+ reabsorption and that the magnitude of this effect is similar to that due to NO's inhibition of transcellular transport.


Assuntos
Cloretos/metabolismo , Alça do Néfron/metabolismo , Óxido Nítrico/metabolismo , Reabsorção Renal , Sódio/metabolismo , Animais , Arginina/farmacologia , Transporte Biológico , GMP Cíclico/farmacologia , Impedância Elétrica , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Alça do Néfron/efeitos dos fármacos , Masculino , Modelos Biológicos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Perfusão , Permeabilidade , Ratos Sprague-Dawley , Reabsorção Renal/efeitos dos fármacos
15.
Am J Physiol Renal Physiol ; 312(3): F489-F501, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003191

RESUMO

Calcineurin dephosphorylates nuclear factor of activated T cells transcription factors, thereby facilitating T cell-mediated immune responses. Calcineurin inhibitors are instrumental for immunosuppression after organ transplantation but may cause side effects, including hypertension and electrolyte disorders. Kidneys were recently shown to display activation of the furosemide-sensitive Na-K-2Cl cotransporter (NKCC2) of the thick ascending limb and the thiazide-sensitive Na-Cl cotransporter (NCC) of the distal convoluted tubule upon calcineurin inhibition using cyclosporin A (CsA). An involvement of major hormones like angiotensin II or arginine vasopressin (AVP) has been proposed. To resolve this issue, the effects of CsA treatment in normal Wistar rats, AVP-deficient Brattleboro rats, and cultured renal epithelial cells endogenously expressing either NKCC2 or NCC were studied. Acute administration of CsA to Wistar rats rapidly augmented phosphorylation levels of NKCC2, NCC, and their activating kinases suggesting intraepithelial activating effects. Chronic CsA administration caused salt retention and hypertension, along with stimulation of renin and suppression of renal cyclooxygenase 2, pointing to a contribution of endocrine and paracrine mechanisms at long term. In Brattleboro rats, CsA induced activation of NCC, but not NKCC2, and parallel effects were obtained in cultured cells in the absence of AVP. Stimulation of cultured thick ascending limb cells with AVP agonist restored their responsiveness to CsA. Our results suggest that the direct epithelial action of calcineurin inhibition is sufficient for the activation of NCC, whereas its effect on NKCC2 is more complex and requires concomitant stimulation by AVP.


Assuntos
Inibidores de Calcineurina/toxicidade , Ciclosporina/toxicidade , Células Epiteliais/efeitos dos fármacos , Imunossupressores/toxicidade , Túbulos Renais Distais/efeitos dos fármacos , Alça do Néfron/efeitos dos fármacos , Membro 1 da Família 12 de Carreador de Soluto/agonistas , Animais , Arginina Vasopressina/farmacologia , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Células Epiteliais/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Túbulos Renais Distais/metabolismo , Túbulos Renais Distais/fisiopatologia , Alça do Néfron/metabolismo , Alça do Néfron/fisiopatologia , Masculino , Ratos Brattleboro , Ratos Wistar , Renina/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/agonistas , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Fatores de Tempo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
16.
Mol Med Rep ; 14(5): 4391-4398, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27748841

RESUMO

Adenosine is a molecule produced by several organs within the body, including the kidneys, where it acts as an autoregulatory factor. It mediates ion transport in several nephron segments, including the proximal tubule and the thick ascending limb (TAL). Ion transport is dictated in part by anionic chloride channels, which regulate crucial kidney functions, including the reabsorption of Na+ and Cl­, urine concentration, and establishing and maintaining the corticomedullary osmotic gradient. The present study investigated the effects of adenosine on the mRNA expression of chloride voltage­gated channel Kb (CLCNKB), a candidate gene involved in hypertension, which encodes for the ClC­Kb channel. Medullary thick ascending limb (mTAL) tubules were isolated from the rat kidney, and primary cultures of mTAL cells from the mTAL tubules were established. The cells were treated with adenosine and the mRNA expression of CLCNKB was detected by reverse transcription­quantitative polymerase chain reaction. The cells were also treated with pathways inhibitors (H8 and AACOCF3), and the protein expression of cyclic adenosine 3',5'­monophosphate (cAMP)­protein kinase A (PKA) and phospholipase A2 (PLA2) by were analyzed by western blotting. The findings indicated that adenosine increased the mRNA expression of CLCNKB in primary cultures of medullary TAL cells, and this stimulatory effect was regulated by the cAMP­PKA and PLA2­arachidonic acid (AA) pathways. The present study showed that adenosine affected the mRNA expression of CLCNKB, initially through the cAMP­PKA pathway and then the PLA2­AA pathway.


Assuntos
Adenosina/administração & dosagem , Proteínas de Transporte de Ânions/biossíntese , Canais de Cloreto/biossíntese , Túbulos Renais Proximais/metabolismo , Alça do Néfron/metabolismo , Adenosina/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/administração & dosagem , Canais de Cloreto/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/biossíntese , Proteínas Quinases Dependentes de AMP Cíclico/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Isoquinolinas/administração & dosagem , Túbulos Renais Proximais/efeitos dos fármacos , Alça do Néfron/efeitos dos fármacos , Néfrons/efeitos dos fármacos , Néfrons/metabolismo , Fosfolipases A2/biossíntese , Fosfolipases A2/genética , Cultura Primária de Células , RNA Mensageiro/biossíntese , Ratos , Transdução de Sinais/efeitos dos fármacos
17.
Am J Physiol Renal Physiol ; 310(8): F748-F754, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26887831

RESUMO

In thick ascending limbs (THALs), nitric oxide (NO) decreases NaCl reabsorption via cGMP-mediated inhibition of Na-K-2Cl cotransporter (NKCC2). In angiotensin (ANG II)-induced hypertension, endothelin-1 (ET-1)-induced NO production by THALs is impaired. However, whether this alters NO's natriuretic effects and the mechanisms involved are unknown. In other cell types, ANG II augments phosphodiesterase 5 (PDE5)-mediated cGMP degradation. We hypothesized that NO-mediated inhibition of NKCC2 activity and stimulation of cGMP synthesis are blunted via PDE5 in ANG II-induced hypertension. Sprague-Dawley rats were infused with vehicle or ANG II (200 ng·kg-1·min-1) for 5 days. ET-1 reduced NKCC2 activity by 38 ± 13% (P < 0.05) in THALs from vehicle-treated rats but not from ANG II-hypertensive rats (Δ: -9 ± 13%). A NO donor yielded similar results as ET-1. In contrast, dibutyryl-cGMP significantly decreased NKCC2 activity in both vehicle-treated and ANG II-hypertensive rats (control: Δ-44 ± 15% vs. ANG II: Δ-41 ± 10%). NO increased cGMP by 2.08 ± 0.36 fmol/µg protein in THALs from vehicle-treated rats but only 1.06 ± 0.25 fmol/µg protein in ANG II-hypertensive rats (P < 0.04). Vardenafil (25 nM), a PDE5 inhibitor, restored NO's ability to inhibit NKCC2 activity in THALs from ANG II-hypertensive rats (Δ: -60 ± 9%, P < 0.003). Similarly, NO's stimulation of cGMP was also restored by vardenafil (vehicle-treated: 1.89 ± 0.71 vs. ANG II-hypertensive: 2.02 ± 0.32 fmol/µg protein). PDE5 expression did not differ between vehicle-treated and ANG II-hypertensive rats. We conclude that NO-induced inhibition of NKCC2 and increases in cGMP are blunted in ANG II-hypertensive rats due to PDE5 activation. Defects in the response of THALs to NO may enhance NaCl retention in ANG II-induced hypertension.


Assuntos
Angiotensina II , Endotelina-1/farmacologia , Hipertensão/metabolismo , Alça do Néfron/metabolismo , Óxido Nítrico/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Animais , CMP Cíclico/análogos & derivados , CMP Cíclico/farmacologia , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Hipertensão/induzido quimicamente , Alça do Néfron/efeitos dos fármacos , Masculino , Doadores de Óxido Nítrico/farmacologia , Inibidores da Fosfodiesterase 5/farmacologia , Ratos , Ratos Sprague-Dawley , Dicloridrato de Vardenafila/farmacologia
18.
Nephron ; 132(2): 153-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26859849

RESUMO

BACKGROUND: Sodium reabsorption is increased in the thick ascending limb (TAL) of Henle in several hypertensive models. In this segment, while transport is increased by ADH via cAMP, sodium reabsorption results from Ang II-induced superoxide (O2(-)) production. Surprisingly, it is unknown whether these mechanisms overlap in hypertension. We hypothesized that Ang II and ADH have accumulative effects on TAL's transport during hypertension. METHODS: The effect of ADH/Ang II in TALs from spontaneously hypertensive rats (SHR) on oxygen consumption (QO2), cAMP and O2(-) was measured. RESULTS: Basal QO2 was 113.3 ± 14.2 nmol O2/min/mg protein. Addition of ADH (1 nM) increased QO2 by 198%. In the presence of ADH, Ang II (1 nM) elicited a QO2 transient response and then rose to 321.5 ± 28.3 (p = 0.003 vs. ADH). These accumulative effects could be due to nitric oxide synthase (NOS) uncoupling, lower Ang II ability to decrease cAMP or increased O2(-). We first measured QO2 using a NOS inhibitor. Pretreatment with L-NAME did not block the observed interaction (p = 0.001 Ang II vs. ADH). Also, Ang II blocked the ADH-stimulated cAMP accumulation in TAL of SHRs. In the presence of ADH, Ang II increased O2(-) production in TALs from SHR by 309% (p = 0.015 vs. basal). The O2(-) scavenger tempol blocked the Ang II effects on QO2. In the presence of the NADPH oxidase inhibitor apocynin, the accumulative effects of ADH and Ang II were abolished. We conclude that (1) in SHR, Ang II has accumulative effects on ADH-stimulated transport; (2) this effect is mediated by AT1 receptors, and increased O2(-) production.


Assuntos
Angiotensina II/farmacologia , Rim/metabolismo , Alça do Néfron/metabolismo , Vasopressinas/farmacologia , Animais , AMP Cíclico/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Rim/efeitos dos fármacos , Alça do Néfron/efeitos dos fármacos , NADPH Oxidases/antagonistas & inibidores , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo
19.
Am J Physiol Renal Physiol ; 310(8): F755-F762, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26764200

RESUMO

We used patch-clamp techniques to examine whether nitric oxide (NO) decreases NaCl reabsorption by suppressing basolateral 10-pS Cl- channels in the thick ascending limb (TAL). Both the NO synthase substrate l-arginine (l-Arg) and the NO donor S-nitroso-N-acetylpenicillamine significantly inhibited 10-pS Cl- channel activity in the TAL. The inhibitory effect of l-Arg on Cl- channels was completely abolished in the presence of the NO synthase inhibitor or NO scavenger. Moreover, inhibition of soluble guanylyl cyclase abrogated the effect of l-Arg on Cl- channels, whereas the cGMP analog 8-bromo-cGMP (8-BrcGMP) mimicked the effect of l-Arg and significantly decreased 10-pS Cl- channel activity, indicating that NO inhibits basolateral Cl- channels by increasing cGMP production. Furthermore, treatment of the TAL with a PKG inhibitor blocked the effect of l-Arg and 8-BrcGMP on Cl- channels, respectively. In contrast, a phosphodiesterase 2 inhibitor had no significant effect on l-Arg or 8-BrcGMP-induced inhibition of Cl- channels. Therefore, we conclude that NO decreases basolateral 10-pS Cl- channel activity through a cGMP-dependent PKG pathway, which may contribute to the natriuretic and diuretic effects of NO in vivo.


Assuntos
Canais de Cloreto/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Alça do Néfron/efeitos dos fármacos , Óxido Nítrico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Arginina/farmacologia , Alça do Néfron/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doadores de Óxido Nítrico/farmacologia , S-Nitroso-N-Acetilpenicilamina/farmacologia
20.
Pflugers Arch ; 468(2): 293-303, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26497703

RESUMO

The thick ascending limb of Henle's loop (TAL) drives an important part of the reabsorption of divalent cations. This reabsorption occurs via the paracellular pathway formed by the tight junction (TJ), which in the TAL shows cation selectivity. Claudins, a family of TJ proteins, determine the permeability and selectivity of this pathway. Mice were fed with normal or high-Ca(2+) diet, and effects on the reabsorptive properties of cortical and medullary TAL segments were analysed by tubule microdissection and microperfusion. Claudin expression was investigated by immunostaining and quantitative PCR. We show that the TAL adapted to high Ca(2+) load in a sub-segment-specific manner. In medullary TAL, transcellular NaCl transport was attenuated. The transepithelial voltage decreased from 10.9 ± 0.6 mV at control diet to 8.3 ± 0.5 mV at high Ca(2+) load, thereby reducing the driving force for Ca(2+) and Mg(2+) uptake. Cortical TAL showed a reduction in paracellular Ca(2+) and Mg(2+) permeabilities from 8.2 ± 0.7 to 6.2 ± 0.5 ∙ 10(-4) cm/s and from 4.8 ± 0.5 to 3.0 ± 0.2 · 10(-4) cm/s at control and high-Ca(2+) diet, respectively. Expression, localisation and regulation of claudins 10, 14, 16 and 19 differed along the corticomedullary axis: Towards the cortex, the main site of divalent cation reabsorption in TAL, high-Ca(2+) intake led to a strong upregulation of claudin-14 within TAL TJs while claudin-16 and -19 were unaltered. Towards the inner medulla, only claudin-10 was present in TAL TJ strands. In summary, high-Ca(2+) diet induced a reduction of divalent cation reabsorption via a diminution of NaCl transport and driving force in mTAL and via decreased paracellular permeabilities in cTAL. We reveal an important regulatory pattern along the corticomedullary axis and improve the understanding how the kidney disposes of detrimental excess Ca(2+).


Assuntos
Cálcio da Dieta/farmacologia , Alça do Néfron/metabolismo , Reabsorção Renal , Junções Íntimas/metabolismo , Potenciais de Ação , Animais , Cálcio/metabolismo , Claudinas/genética , Claudinas/metabolismo , Feminino , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Alça do Néfron/efeitos dos fármacos , Magnésio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Cloreto de Sódio/metabolismo , Junções Íntimas/efeitos dos fármacos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...